An Extended Maritime Domain Awareness Probabilistic Ontology Derived from Human-aided Multi-Entity Bayesian Networks Learning
نویسندگان
چکیده
Ontologies have been commonly associated with representing a domain using deterministic information. Probabilistic Ontologies extend this capability by incorporating formal probabilistic semantics. PR-OWL is a language that extends OWL with semantics based on Multi-Entity Bayesian Networks (MEBN), a Bayesian probabilistic logic. Developing probabilistic ontologies can be greatly facilitated by the use of a modeling framework such as the Uncertainty Modeling Process for Semantic Technology (UMP-ST). An example of using UMPST was the development of a probabilistic ontology to support PROGNOS (PRobabilistic OntoloGies for Net-Centric Operational Systems), a system that supports Maritime Domain Awareness (MDA). The PROGNOS probabilistic ontology provides semantically aware uncertainty management to support fusion of heterogeneous input and probabilistic assessment of situations to improve MDA. However, manually developing and maintaining a probabilistic ontology is a labor-intensive and insufficiently agile process. Greater automation through a combination of reference models and machine learning methods may enhance agility in probabilistic situation awareness (PSAW) systems. For this reason, a process for Human-aided MEBN Learning in PSAW (HMLP) was suggested. In previous work, we used UMP-ST to develop the PROGNOS probabilistic ontology. This paper presents an extended PROGNOS probabilistic ontology developed using HMLP. The contribution of this research is to introduce the extended PROGNOS probabilistic ontology and present a comparison between two processes (UMP-
منابع مشابه
DENIED OPERATIONAL ENVIRONMENTS MULTI-ENTITY BAYESIAN NETWORKS LEARNING IN PREDICTIVE SITUATION AWARENESS Topic 3: Data, Information and Knowledge
Over the past two decades, machine learning has led to substantial changes in Data Fusion Systems throughout the world. One of the most important application areas for data fusion is situation awareness to support command and control. Situation Awareness is perception of elements in the environment, comprehension of the current situation, and projection of future status before decision making. ...
متن کاملPR-OWL 2 Case Study: A Maritime Domain Probabilistic Ontology
Probabilistic ontologies incorporate uncertain and incomplete information into domain ontologies, allowing uncertainty in attributes of and relationships among domain entities to be represented in a consistent and coherent manner. The probabilistic ontology language PR-OWL provides OWL constructs for representing multi-entity Bayesian network (MEBN) theories. Although compatibility with OWL was...
متن کاملPR-OWL: A Framework for Probabilistic Ontologies
Across a wide range of domains, there is an urgent need for a wellfounded approach to incorporating uncertain and incomplete knowledge into formal domain ontologies. Although this subject is receiving increasing attention from ontology researchers, there is as yet no broad consensus on the definition of a probabilistic ontology and on the most suitable approach to extending current ontology lan...
متن کاملQuery Architecture Expansion in Web Using Fuzzy Multi Domain Ontology
Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...
متن کاملUsing Probabilistic Ontologies for Video Exploration
Video data is being collected at alarming rates and yet there exists no comprehensive forensic toolset that enables the analyst to quickly examine video in the context of the massive collections. This research builds a System that studies video at a semantic level by means of a joint solution to semantic entity extraction, entity-entity relationship extraction, and dynamic event recognition. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016